
Agile + Kernel Programming =
?

Xtreme Challenges require Xtreme
Practices?

Mridul Jain

What is the point ?
• Introduction to Agile - mandatory by

methodology to turn the dial for good
practices to the extreme, always.

• Kernel Programming (KP) – mandatory by
necessity to follow extreme practices to
make anything work, always.

So, what values can KP draw from Agile?

Kernel Programming in Short
• Coding in kernel space
• Practical limitation of size, memory, limited instruction set.
• Knowledge of hardware required
• Unfettered creativity not allowed - in design, coding etc
• Performance, realtime results matter equally apart from

functionality
• Debuggers, performance boosters, maintainers are all

kernel programmers to an extent – Kernel knowledge is
their common language.

• Surrounded by pseudo kernel programmers` community
where everyone considers themselves as Linus or RMS

Agile (from the perspective of KP)
• Agile born in the enterprise world for enterprise

technology in user space.
• “What is a customer? We have only heard of

users!!”
• “Collective Code ownership + peer review – we

already do it in open source!”
• “Sounds same as open source except that we have

not heard this word from Eric Raymond.”
• “Oh! We didn’t know that there is something, we

are not doing well enough that we now need to
depend on some methodology from enterprise?”

Challenges in Kernel Programming
• Consequences of coding in kernel space?
• Problem of bottlenecks at every step.
• Abstract knowledge of concepts and fate of a

programmer when he looks at the code!
• Kernel is a single big process
• Where do you start?
• Changes in one place break things elsewhere.
• Unless code follows modularity, things become

complex fast & unmanageable.
• Stunts could be costly

Challenges in following Agile in KP
• Who plays the customer and how much value he gives?
• What will be the customer acceptance test and how will he

test them?
• In kernel are requirement cards possible?
• Can requirements be prioritized externally?
• How do estimates and schedules work when most of the

steps are bottlenecks? Will the whole project be a spike?
• What happens let’s say in case of embedded systems?
• Pair programming is valuable, but how economically

feasible is it?
• How does test first approach work? Do we have any test

frameworks in kernel space? Should the test be only
functional?

• Are frequent builds possible?
• Will pair rotation work?

Agile + KP = hand & glove. Where?
• Iterative nature and design/analysis at every step

helps.
• Spikes are not relevant but R&D is(deeper

thoughts needed).
• Continuous integration comes naturally
• Courage finds quite relevant meaning naturally.
• Developers are the power. Infact there are only

developers and their decision
• Peer discussions is almost second nature.
• Collective Code ownerships seen generally in

kernel development.

Finding answers & extending
those that exist

Test Driven Development
• Need a generic test driver for unit tests
• Linux Test project – Automated testing for kernel
• Contains 2500 test programmes
• Environment for defining new tests, integrating existing benchmarks and

analyzing your test results
• LTC has tested more than 50 new kernel versions and found more than

500 defects.
• Includes regression testing on new kernels to ensure they meet the

functionality of previous kernels.
• Integration testing then validates component interaction, driven by

macro-benchmark workloads.
• Finally, reliability and stress testing validate systemic robustness with

extended duration tests (96 hrs to 30 working days).
• Software Testing Automation Framework (STAF/STAX)
• Test coverage visualization tools lets you see code coverage –

GCOV/LCOV

Test Driven Development
• OSDL’s Scalable Test Platform
• LTP is one of the tests that OSDL executes
• Web interface also allows to search for historic

results.
• Patches placed in the Patch Lifecycle Manager can

be analyzed using a variety of test in STP.
• Mode of operation of STP.
• User-Mode Linux is a SAFE, secure-way of running

Linux versions and Linux Processes.
• Hack without risking your main Linux setup.
• Less reboots.

Refactoring
• Success of Linux - modularity and clean interfaces
• Great coding - effort of years of constant

restructuring from the community. But is it
refactoring?

• Need for automated tests systems like LTP/osdl ‘s
STP etc.

• Refactoring can be fruitful by using tools like
“Cross-Referencing Linux” http://lxr.linux.no/

• Patch and diff - standard tools by which a
restructured code is accepted in the kernel. Need is
to send the test scripts which can be added to LTP
etc.

Simple Design
• Unix philosophy is not a formal design method. More an empirical

approach.
• Unix philosophy is bottom-up, not top-down. Pragmatic and grounded in

experience.
• Write programs that do one thing and do it well
• Clarity is better than cleverness.
• Separate policy from mechanism; separate interfaces from engines
• Design for simplicity; add complexity only where you must
• Use simple algorithms as well as simple data structures.
• Right choice of data structures, lead to self-evident algorithms.
• Use tools not unskilled help, even if you have to detour to build the tools
• Design and build software, even operating systems, to be tried early,

ideally within weeks
• Don't optimize early.

Spikes & KXP
• Notion of spikes does not have much

meaning in KXP.
• Lack of knowledge or ignorance cannot be

called as a spike in KXP
• Need for a better tool to take care of real

R&D issues, things never done before
• R&D and bottlenecks prevent schedule

estimation
• Throw R&D/feasibility, outside the usual XP

cycle in KXP?

Points to ponder!!
• Sustainable Pace – Lack of information and

experience have direct effect on XP.
• Small Releases – Possible but customer here has

to be equally experienced developer to test.
• Continuous Integration - Inherent in kernel coding
• Pair Programming – Difficult to find people; but

definitely a big help for speedup. More peer
programming than pair programming. Falls
between books and pair programming – mailing
lists, discussions etc.

• Detours and alternatives continuously thought of
parallelly and iteratively with analysis & design.

• Definitely a need to do more and write KXP?

