Agile + Kernel Programming =
?

Xtreme Challenges require Xtreme
Practices?

Mridul Jain

What is the point ?

 Introduction to Agile - mandatory by
methodology to turn the dial for good
practices to the extreme, always.

e Kernel Programming (KP) — mandatory by
necessity to follow extreme practices to
make anything work, always.

So, what values can KP draw from Agile?

Kernel Programming in Short

Coding in kernel space

Practical limitation of size, memory, limited instruction set.
Knowledge of hardware required

Unfettered creativity not allowed - in design, coding etc

Performance, realtime results matter equally apart from
functionality

Debuggers, performance boosters, maintainers are all
kernel programmers to an extent — Kernel knowledge is
their common language.

Surrounded by pseudo kernel programmers community
where everyone considers themselves as Linus or RMS

Agile (from the perspective of KP)

Agile born in the enterprise world for enterprise
technology in user space.

“What is a customer? We have only heard of
users!!”

“Collective Code ownership + peer review — we
already do it in open source!”

“Sounds same as open source except that we have
not heard this word from Eric Raymond.”

“*Oh! We didn’t know that there is something, we
are not doing well enough that we now need to
depend on some methodology from enterprise?”

Challenges in Kernel Programming

Consequences of coding in kernel space?
Problem of bottlenecks at every step.

Abstract knowledge of concepts and fate of a
programmer when he looks at the code!

Kernel is a single big process
Where do you start?
Changes in one place break things elsewhere.

Unless code follows modularity, things become
complex fast & unmanageable.

Stunts could be costly

Challenges in following Agile in KP

Who plays the customer and how much value he gives?

What will be the customer acceptance test and how will he
test them?

In kernel are requirement cards possible?
Can requirements be prioritized externally?

How do estimates and schedules work when most of the
steps are bottlenecks? Will the whole project be a spike?

What happens let’s say in case of embedded systems?

Pair programming is valuable, but how economically
feasible is it?

How does test first approach work? Do we have any test
frameworks in kernel space? Should the test be only
functional?

Are frequent builds possible?
Will pair rotation work?

Agile + KP = hand & glove. Where?

lterative nature and design/analysis at every step
helps.

Spikes are not relevant but R&D is(deeper
thoughts needed).

Continuous integration comes naturally
Courage finds quite relevant meaning naturally.

Developers are the power. Infact there are only
developers and their decision

Peer discussions is almost second nature.

Collective Code ownerships seen generally In
kernel development.

Finding answers & extending
those that exist

woz Grmmnea® o2 o m_.ﬁ_m_ﬂﬁﬁ

jlewic
Joudera
ne4 ubiseq uoneabaju
A quule)sng, \ adug, / SNoNuLLo
ALY bunuweaboa 4 sise).
) bunioprvyed i _ O

bumuryy /

pavpuele, WeaLQ-is?l digsasumng
bupo- 24791107

yawdoyaaeg A

wee)

dii $371}7844 4X

Test Driven Development

Need a generic test driver for unit tests
Linux Test project — Automated testing for kernel
Contains 2500 test programmes

Environment for defining new tests, integrating existing benchmarks and
analyzing your test results

LTC has tested more than 50 new kernel versions and found more than
500 defects.

Includes regression testing on new kernels to ensure they meet the
functionality of previous kernels.

Integration testing then validates component interaction, driven by
macro-benchmark workloads.

Finally, reliability and stress testing validate systemic robustness with
extended duration tests (96 hrs to 30 working days).

Software Testing Automation Framework (STAF/STAX)

Test coverage visualization tools lets you see code coverage —
GCOV/LCOV

2 ULT/ISET B I'W |] ITEING
=W I6S/FLF B TT0R - A B ith
e {8 L WK % LU'SY |] ITITEIR
= ers/6ir B YRL Ity
j _ TOTEESp 3N
i _ I Enp
j _ bad
U 68 1wy 4 0EL TAITTTvar

WPUI|I4
ESER :Sauj| pandaxg %, £ /b (PRIBADD BPO7)
CHTA (SaU)| pajuawnnsu) JT-50-¢00Z 2eq
['ao2b sa)
i@y - METATSAD TMBIA JUaLIn)

Jodas abeiaaod apod - UOISUIXI ADDD 4177

Test Driven Development

OSDL'’s Scalable Test Platform
LTP Is one of the tests that OSDL executes

Web interface also allows to search for historic
results.

Patches placed in the Patch Lifecycle Manager can
be analyzed using a variety of test in STP.

Mode of operation of STP.

User-Mode Linux is a SAFE, secure-way of running
_Inux versions and Linux Processes.

Hack without risking your main Linux setup.
_ess reboots.

Refactoring

Success of Linux - modularity and clean interfaces

Great coding - effort of years of constant
restructuring from the community. But is it
refactoring?

Need for automated tests systems like LTP/osdl ‘s
STP eftc.

Refactoring can be fruitful by using tools like
“Cross-Referencing Linux” http://Ixr.linux.no/

Patch and diff - standard tools by which a
restructured code is accepted in the kernel. Need is
to send the test scripts which can be added to LTP
etc.

L - - - L

SWE 11"

‘L SFoInE, =

"HTNODH SIHI = ISUMD"
] = 2dA3 EJ EJOoIOEF 2dA] WaJEAE =] T3 J20I3E JTIEIE
|

{fzedne 7713 Ejojne ‘EiEp ‘ebe73 ‘ediy Eeg)nepou gE 3eb uingea
)

(FJEpy PTOL 'BWFU fep, IFPND JEV0D ‘EBETI jurt
‘adhy EJ, Pdr] WLEJERE 2113 JJ0IJE)QE J80 EJOJOE, Hoo1q Z2d0E JO0IFE ITIEJE
u BT BFeqEby SpCipauTy
S0 ITUTSEIN T S S pE TOL T
<O e [Opoll/XO0T][> 2pOToUTH
g =g
E
"BOUBIBIBT Ag orersg peaoIodIoDuT ‘HoTEIBA IB3OT Aoe ‘opTrgdp
Immod 3@ I0 ‘7 HpTRIBA ‘BRHBOTT OITOR TOIBISS (WS 8053 IO FIEIB] B3 4
Iepun B8TJUTICAD BpOIE FT PUR TBUIBY XRUTT 803 Jo 3I0d FT BTIF FIOL
£
paazessy FIGOTH [I¥ —— UOTIRIQAIOD ORSEFURIL AFAT-L66 T IOTIAdCD o
+
D JTUT /EFOIRE/ET /XOUTT
E

¥ —g— D-XOUTT —p— g/

[#9708 | [$gaieds | [Aleds]

(s] [pgts] [2dd] [yosdim | [=dim] [Ygow | [yoml | [e | [eqdie] [9g¢?]

121N L2l

[orezllsz¥c]l [RT¥C]l[OZZZ][OFOZ][ETZT]60T] Uors1a s

[TTess o[|

[ga1Ees 1¥aleal] |

[TaTess Tanuep! | J -HME\ m.ﬁcn—..—.—nw \ m.ﬁ\x n EﬁH—H

[dtaetr Jip |

Pt N XTIUT' | SUIUIIJIY-SS0I)

L

i M

B il 2

Si-jeisErrapair]|

—— el Bl 1 .

Simple Design

Unix philosophy is not a formal design method. More an empirical
approach.

Unix philosophy is bottom-up, not top-down. Pragmatic and grounded in
experience.

Write programs that do one thing and do it well

Clarity is better than cleverness.

Separate policy from mechanism; separate interfaces from engines
Design for simplicity; add complexity only where you must

Use simple algorithms as well as simple data structures.

Right choice of data structures, lead to self-evident algorithms.

Use tools not unskilled help, even if you have to detour to build the tools

Design and build software, even operating systems, to be tried early,
ideally within weeks

Don't optimize early.

Spikes & KXP

Notion of spikes does not have much
meaning in KXP.

Lack of knowledge or ignorance cannot be
called as a spike in KXP

Need for a better tool to take care of real
R&D Issues, things never done before

R&D and bottlenecks prevent schedule
estimation

Throw R&D/feasiblility, outside the usual XP
cycle in KXP?

Points to ponder!!

Sustainable Pace — Lack of information and
experience have direct effect on XP.

Small Releases — Possible but customer here has
to be equally experienced developer to test.

Continuous Integration - Inherent in kernel coding

Pair Programming — Difficult to find people; but
definitely a big help for speedup. More peer
programming than pair programming. Falls
petween books and pair programming — mailing
ISts, discussions etc.

Detours and alternatives continuously thought of
parallelly and iteratively with analysis & design.

Definitely a need to do more and write KXP?

