
Copyright © 2013, AgileFAQs. All Rights Reserved.

Inverting the Pyramid
Naresh Jain

naresh@agilefaqs.com
   @nashjain

      http://nareshjain.com  

mailto:naresh@industriallogic.com
mailto:naresh@industriallogic.com
http://exortech.com/blog
http://exortech.com/blog


Plan

Design

Distribute

Work in 
Isolation

Integrate

H
ap

pi
ne

ss
/E

xc
ite

m
en

t

Time/Money/Opportunity Cost

Back in the Stone-age



Copyright © 2013, AgileFAQs. All Rights Reserved.

Last Minute Integration Surprises



BAD things were visible too Late...



Birth of CI





Copyright © 2013, AgileFAQs. All Rights Reserved.

CI Helped Us Learn That... 
Life can Suck a lot Less!

Feedback Quality

Delivery Time Wastage

Collaboration



Lean-Start-up Community
Tried something quite disruptive...



Copyright © 2013, AgileFAQs. All Rights Reserved.

Continuous Deployment





But...



Copyright © 2013, AgileFAQs. All Rights Reserved.

Software Testing Ice-cream Cone

Unit 
Tests

Integration
Tests

End-to-End
GUI Tests 10-20%

5-10%

1-5%

Manual Checking



Commercial Break!



Copyright © 2013, AgileFAQs. All Rights Reserved.



Mumbai



Tech Talks!







Copyright © 2013, AgileFAQs. All Rights Reserved.

Testing VS. Checking
Testing is explorative, probing and learning oriented.

Checking is confirmative (verification and validation of what we already 
know). The outcome of a check is simply a pass or fail result; the outcome 
doesn’t require human interpretation. Hence checking should be the first 
target for automation.

Michael Bolton explains it really well: “A development strategy that emphasizes checking at the 
expense of testing is one in which we’ll emphasize confirmation of existing knowledge over 
discovery of new knowledge. That might be okay. A few checks might constitute sufficient testing 
for some purpose; no testing and no checking at all might even be sufficient for some purposes. 
But the more we emphasize checking over testing, and the less testing we do generally, the more 
we leave ourselves vulnerable to the Black Swan.”

James Bach points out that checking does require some element of testing; to create 
a check requires an act of test design, and to act upon the result of a check requires 
test result interpretation and learning. But its important to distinguish between the 
two because when people refer to Testing they really mean Checking.

Why is this distinction important?



Copyright © 2013, AgileFAQs. All Rights Reserved.

Inverting the Testing Pyramid

Unit 
Tests

Integration
Tests

End-to-End
GUI Tests 80-90%

5-15%

1-5%

Typical testing strategies lead to an inverted testing pyramid...

Manual Checking



Copyright © 2013, AgileFAQs. All Rights Reserved.

Inverting the Testing Pyramid

Unit Tests

Biz Logic Acceptance Tests

Integration Test 

Workflow Tests

End to End 
Flow Tests

GUI
Tests

1%

70%

10%

9%

6%

4%

Performance
Tests

Security
Tests

This is the need of the hours...

One Layer Below GUI





Copyright © 2013, AgileFAQs. All Rights Reserved.

Number of End-to-End Tests
T1 T2 T3

DB

Classes

Method Calls

8 9 11

70 Complex, Fragile End-to-End Tests 
vs. 

61 Unit tests + 8 End-to-End Tests



Copyright © 2013, AgileFAQs. All Rights Reserved.

Best ROI for Testing

End to End

API

Modules

Unit

0 25 50 75 100

Impact Lines of Test Code

90% 10%

70% 30%

65% 35%

90%10%

La
ye

rs

Value



Inverting the Pyramid
How to…?



Copyright © 2013, AgileFAQs. All Rights Reserved.

Types of Tests in the Testing Pyramid

Unit Tests

Acceptance
Tests

GUI
Tests

Small Agile Projects with Single Team

Unit Tests

Biz Logic Acceptance Tests

Integration Test 

Workflow Tests

End to End 
Flow Tests

GUI
Tests

1%

70%

10%

9%

6%

4%

Performance
Tests

Security
Tests

Large Scale Agile Projects with Global Teams

One Layer Below GUI



Copyright © 2013, AgileFAQs. All Rights Reserved.

Types of Tests for Large Agile Project
Type Tool Who When Level Objective

Unit Tests
xUnit, Mockito/
Moq, Jasmine, 
HSqlDB, Jumble

Developers During the sprint, while coding Class
Each class functions correctly in isolation. The 
UI components (including JS) can also be unit 
tested in isolation.

Biz Logic 
Acceptance 
Tests

Cucumber (some 
may need Lisa)
JMeter/LoadRunner

TechBAs + 
Developers + 
Testers (QA)

Acceptance Criteria are 
defined before sprint starts. 
Acceptance Tests are written 
during sprint, before coding

Work-steam specific 
business functionality 
(At component level)

From a business logic point of view, the 
functionality is implemented correctly. Works 
in isolation with other work-streams/modules.
Also good point to do some basic 
performance testing.

Integration 
Test 

xUnit + Lisa
Developers + 
Testers (QA) + 
TechBAs

Contracts are defined before 
sprint, tests are implemented 
during the sprint

Between dependencies 
(work-streams, 
upstream/down-stream 
systems, 3rd Party)

2 Components can communicate with each 
other correctly. Best suited for negative path 
testing. Should not test any functional aspects 
of the application.

Workflow 
Tests

Cucumber + Lisa
SMEs + TechBAs + UX 
+ Developers + Arch 
+ Testers (QA + UAT)

When a theme is picked 
(functional group of sprints) 

Across a few work-
streams (Issuance/
Acceptance)

Inside a trade work flow, a particular step 
(issuance or acceptance workflow) works 
correctly from the business point of view. 
Upstream/Downstream dependencies stubbed.

End to End 
Flow Tests

Cucumber
JMeter/LoadRunner

SMEs + TechBAs + UX 
+ Developers + Arch + 
Testers (QA + UAT)

When an Internal Milestone is 
decided, the E2E flow tests are 
defined & authored. As & when 
the complete workflow is 
implemented these tests are 
enabled.

End to end Trade flow, 
one layer below the UI

Ensure a specific type of trade can go thru all 
the steps successfully.
Very important to do detailed performance 
testing at this stage.

GUI Tests
Selenium/Sahi/
Watir/White/

SWTBot

TechBAs + UX + 
Testers (QA)

Usually its takes 3-4 sprints to 
complete one whole workflow 
including the UI. After that the 
UI tests will be authored and 
executed.

End to end Trade flow 
with GUI

Ensure few basic types of trades can go thru 
all the steps successfully via a UI.



Copyright © 2013, AgileFAQs. All Rights Reserved.

“Testing” Touch Points during Project Lifecycle
Product 
Discovery

Release 
Planning

1st Release 
Themes

Work-
Stream 
Planning

Sprint 
Planning Sprint

Sprint 
Review

Internal 
Milestone 
Release

Release

➡Collaborate to 
create the story map
➡Help SMEs to 
define Acceptance 
Criteria at each level 
in story map

➡Define goals & 
readiness criteria 
for each Release.

➡Ensure themes 
are coherent 
➡Create theme 
level epics
➡Author End-to-
end flow tests 

➡Author Work-flow tests
➡Collaborate on identifying 
dependency and 
documenting them
➡Create stream level epics
➡Create Integration Test

➡Collaborate with Dev 
& Biz to write Automated 
Acceptance Test
➡Exploratory Testing
➡Buddy testing
➡UI automation of 
previous sprint tasks
➡Performance & 
Security Tests

➡Sanity Testing in ER cycles
➡Confirm user goals are 
met with operations team
➡Participate in Internal 
Release retrospective

➡Validate Acceptance 
criteria at story level
➡Estimate Tasks 

➡Show demo (parts)
➡Confirm that the biz 
requirements are met 
with stakeholders
➡Participate in Sprint 
retrospectives

➡Sanity Testing in 
Live environment
➡Participate in 
Release retros

➡The Continuous Integration and Build Pipeline process will execute all tests as part 
of the regression pack and report various quality parameters to all stakeholders.

➡On going Governance & Test Data management



Elevator 
Pitch

Business 
Goals

Chartering

Pragmatic
Personas

User 
Goals

Day in Life 
of each 
Persona

Scenarios & 
Narratives

Personas

Activity Map

Task Map
Interaction 

DesignUI Sketch

Story Mapping

PrioritizationGrouping by 
Themes

Reiterating

Planning

User 
Stories

Acceptance
Criteria

User Story Authoring

Collaborative Product Discovery Steps

Participants
Product Owners

SMEs
Operation/Support Reps

Tech BAs
User Experience Designer

App Developers
Architects

Testers (QA+UAT)
Project Managers

A
c
c
e
p
t
a
n
c
e

C
r
i
t
e
r
i
a



Copyright © 2013, AgileFAQs. All Rights Reserved.

Typical Continuous Integration Process

Reports

Test

Checkstyle

Test



Copyright © 2013, AgileFAQs. All Rights Reserved.

Continuous Integration Build Pipeline
Local 

Dev Build

Smoke 
Build

Functional 
Build

Cross 
Stream 
Build

Theme 
Build

Product 
Build

UAT 
Build

Live 
Build

Staging 
Build

Dev Box

Team CI Server

Team CI Server

Dev Env

SIT Env

QA Env

UAT Env

Staging Env

Prod Env

~5 Min

~10 Min

~30 Min

~60 Min

~60 Min

~60 Min

~30 Min

~30 Min

~30 Min

Update

Checkin

Che
ck

ou
t

Publish 
Artifacts 

(jars)

Re
tr

ie
ve

 P
ub

lis
he

d 
A

rt
ifa

ct
s

Retr
iev

e P
ub

lish
ed 

Artif
act

s

Pu
blis

h/P
romote 

Depe
nd

ent
 Artif

act
s

Retrieve
Artifacts 

Retrieve
Artifacts 

Retrieve Published Artifac
ts

Retrieve Published Artifacts

C
heckout

C
heckout

Checkout

Checkout

SCM

Each build will update 
Task statues

Each build will broadcast build 
stats and other reports to all 
relevant stakeholders at each 
stage of the build pipeline

Dependency
Management

Project/Task 
Management

Tool

Version
Control



Copyright © 2013, AgileFAQs. All Rights Reserved.

Local 
Dev 
Build

Smoke 
Build

Func 
Build

Cross 
Stream 
Build

Theme 
Build

Prod 
Build

UAT 
Build

Staging 
Build

Live 
Build

➡DevOps Roles (currently missing) & Test Data strategy is very important to get this working.
➡Overall governance model will also be required to make sure build failures are addressed immediately.

Objective

Job

Duration

Stake-
holders

Trigger/
Frequency

Where

Artifacts

Ensure basic sanity 
before the 
developer checks 
in code.

Ensure the 
developer has 
checked in all files, 
the code compiles, 
all unit tests work 
and basic code 
quality related 
stats are reported 
to the devs.

Ensure each story’s 
business logic is 
implemented 
correctly and 
satisfies the 
doneness criteria at 
the story level

Ensure each story 
integrates with other 
streams and business 
logic continues to 
work as expected.
Promote new 
produced jars to 
dependent teams.

Ensure each 
implemented, 
complete trade 
workflow works 
as expected.
Interact with as 
many sub-systems 
& interfaces as 
possible.

Ensure each 
implemented end-to-
end feature works as 
expected including 
various performance 
and security related 
SLAs are met. Also test 
out the migration 
scripts

Ensure 
Operations can 
execute an end to 
end workflow and 
it meets their 
goals.

Ensure the product 
as as a whole can 
work with other 
systems in the 
enterprise.  Make 
Go/No-Go 
decision.

Deploy the product 
to the live 
environment.

Retains the 
environment. Only 
compiles and tests 
locally changed 
code 
(incremental).

Compiles, Unit test 
and static/dynamic 
code analysis on an 
incremental 
environment

Clean environment, 
setup database, team 
specific biz 
acceptance tests. 
Stubs/Mocks out 
other functional 
modules or sub-
systems.

Integrate promoted 
code with other 
modules, runs cross-
team workflow & 
integration tests in 
an incremental env. 
Stubs/Mocks other 
sub-systems. 
Promote jars to 
dependent stream.

Clean 
environment, 
setup dependent 
systems, execute 
theme-level 
acceptance tests. 
As few stubs/
mocks as possible.

Migrate existing system 
to the latest version, 
setup dependent 
systems, execute 
product-level 
acceptance and UI 
tests. Almost no stubs/
mocks.

Migrate existing 
system to the 
latest version, 
setup dependent 
systems, let the 
Operations team 
use the system 
thoroughly.

Migrate existing 
system to the latest 
version, test the 
system with other 
systems during the 
Enterprise Release 
cycle.

Migrate existing 
system to the latest 
version and party!

~ 5 mins. ~ 10 mins. ~ 30 mins ~ 60 mins ~ 60 mins ~ 60 mins ~ 30 mins ~ 30 mins ~ 30 mins

Developer writing 
the code

Developers of a 
given team

Team members of a 
given team + Teach 

BA

All functionally 
affected Teams + 

SMEs
All teams + SMEs All teams + SMEs

SCM + SMEs + 
Operations Team

Enterprise Wide World-wide

Before checking in 
code. At least 
every 30 mins.

Every checkin. At 
least every 30 
mins.

On successful 
Smoke build. At least 

every 2 hours

On successful 
Functional build. At 
least twice each day

On successful 
Cross-Stream 
build. At least 
once each day

On successful Theme 
build. At least once 

each week
Each Sprint

Each Enterprise 
Release Cycle

On Successful 
Staging Build 

(Manually triggered 
for now)

On developer’s 
workstation

Team CI Server Team CI Server Dev Environment SIT Environment QA Environment UAT Environment
Stating 

Environment
Production Env

Code+Tests
+Config

Team produced 
Jars, static code 
analysis reports

Team produced Jars/
Wars. Static+ 

Dynamic Code 
Analysis reports

Integrated jars 
pushed to 

dependent teams

Fully functional 
app with 

workflow level 
reports

Configured & packaged 
app (war) with 

migration scripts & 
traceability reports.

Configured & 
packaged app 

(war) with 
migration scripts

Configured & 
packaged app (war) 

with migration 
scripts

$$



Copyright © 2013, AgileFAQs. All Rights Reserved.

Example Jenkins Build Pipeline Plugin’s View



Copyright © 2013, AgileFAQs. All Rights Reserved.

TDD Rhythm - Test, Code, Refactor

Add a Test

Run the Test

Make a little 
change

Run the Test

Refactor

Fail

Pass

Fail

Pass

Test Driven Development



Copyright © 2013, AgileFAQs. All Rights Reserved.

Acceptance Test Driven Development

Iteration

Automated 
Acceptance Tests

Automated
Acceptance Tests

Story

Acceptance 
Criteria

Acceptance 
Criteria

Exploratory
Testing

Automated UI 
Tests

T
E
S
T
S

P
E
R
F
O
R
M
E
N
C
E

Automated 
Unit Test





Copyright © 2013, AgileFAQs. All Rights Reserved.

Thank you

Naresh Jain
naresh@agilefaqs.com

mailto:naresh@agilefaqs.com
mailto:naresh@agilefaqs.com

