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Objectives
Present Sapient’s point-of-view on emerging software development trends
Discuss how Agile and MDD are together changing the way we develop
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Agenda
A look at the current state of the industry
What is the problem we are trying to solve?
Our solution
Pilot projects, results and benefits
Questions and feedback
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How is our industry performing?

The vast majority of projects still 
do not complete on time or on 
budget 
For solutions that are actually 
delivered, nearly two-thirds of 
the features built are rarely or 
never used – in other words, 
waste!
The root cause of this waste is 
fundamentally driven by the 
ways that partners engage with 
their clients
Customers have been burned 
and aren’t willing to wait before 
seeing ROI – they want to know 
the solution will meet their 
needs

Source: The Chaos Chronicles, The Standish Group, 2004.
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Object Role Models

Agile Methods

Spiral

Javadoc

DocBook

Turbo Pascal

A Brief (Abridged) History of Software Development…
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Automation and Convergence

Decreasing Cycle Times, Embracing Change, 
Engaging Business/End Users, Eliminating Waste
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A common way to develop custom applications today…

Gather requirements

Create models – business process models, 
object models, data models, …

Translate these models to code.
Code a lot!

Test, fix and tune the “crude” application until it is refined.
Iterate, iterate, iterate…
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What’s wrong with this approach?

Laborious and inefficient
Several tasks are repetitive, mundane and boring
Technology cannot keep up with business
Implementation does not match the requirements
Difficult to remain competitive

Business User

Send / Receive Group
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Customer Natural Gas Retailer

Comm. 
Order 
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Start 
Comm. 
Order
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Commodity 

Order

New 
Order Get Commodity 

Price From 
Suppliers

Compose 
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Review /
Adjust /
Approve 

Priced Order

Sales approval required

Send Priced 
Order to 

Customer
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Priced Order

Priced 
OrderReview / 
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Order

Receive 
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Order

Deactivate 
Order
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Compute 
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Fixed price required Developer

DBA

Company ContactCompany Contact

Contract Address

Meter

<<Enumeration>>
Role

+counterPartyTrader : String = COUNTERPARTY TRADER
+trader : String = TRADER

<<Entity>>
Company

+quotesRequireApproval : Boolean
+name : String

<<Entity>>
CompanyContact

+role : Role

<<Entity>>
Address

+country : String

+street : String

+state : String
+city : String

+zip : String

<<Entity>>
Contact

+username : String
+firstName : String
+lastName : String

<<Entity>>
Meter

+meterId : String
+name : String

<<Entity>>
Contract

+begDate : Date
+endDate : Date

+contracts*

+meters
*

+parties*

+contracts

*

+contract

1

+billingAddress

1

+company
*

+contacts
*
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What can we do to change this?

Create a process that adapts to changing business needs
Provide frequent opportunities to business/end users to offer feedback

Raise the level of abstraction
Let developers focus on the business problem – not on technology trivia

Eliminate manual translations to get from requirements to code
Recognise repetitive tasks and patterns
Automate, automate, automate!

So how do we do that?
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Release 2Fusion Executable Architecture Release

High Priority

Low Priority

X

Regular iterations of 2-4 weeks

Story
Backlog

Ability to add/remove 
and reprioritize stories 
each iteration

Introducing Sapient|Approach
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Supplemental Artifacts/Models

Interaction Patterns
Personas
Task Clusters
Wireframes
User Scenarios
Site Maps
Style Guides
UI Prototypes

Supplemental Artifacts/Models

Interaction Patterns
Personas
Task Clusters
Wireframes
User Scenarios
Site Maps
Style Guides
UI Prototypes
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<<Enumeration>>Role
+counterPartyTrader : String = COUNTERPARTY TRADER+trader : String = TRADER

<<Entity>>Company
+quotesRequireApproval : Boolean+name : String

<<Entity>>CompanyContact
+role : Role

<<Entity>>Address

+country : String

+street : String
+state : String+city : String
+zip : String

<<Entity>>Contact
+username : String+firstName : String+lastName : String

<<Entity>>Meter
+meterId : String+name : String

<<Entity>>Contract
+begDate : Date+endDate : Date

+contracts*

+meters*

+parties*

+contracts
*

+contract
1

+billingAddress
1

+company* +contacts*

<<Service>>
TradingService

+getTradeSummaries( criteria : TradeSearchCriteriaVO ) : TradeSummaryVO[]
+approveQuote( trade : TradeVO, comments : CommentsVO ) : void

+getTradeSummaryForUser( userId : String ) : TradeSummaryVO[]
+saveTrade( trade : TradeVO, comments : CommentsVO ) : Long
+cancelQuote( tradeId : Long, comments : CommentsVO ) : void+getTradeDetails( tradeId : Long ) : TradeDetailsVO
+getAllCommodities() : CommodityVO[]+getAllPriceIndexes() : PriceIndexVO[]

TradeStatusRecord

CommodityPosition

CompanyContact

TradeContact

Commodity

Comments

PriceIndexContract

Position Contact

Trade

Point

Just-In-Time 
Use Case 
Modeling

Continuous 
Integration

Automated 
Functional 

Acceptance 
Testing

Model-Driven 
Development

Sapient|Approach – A typical iteration
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Model Driven Development

A software development approach where system implementation is 
truly driven by the business model
The business model is independent of technology
Business model is automatically translated into a technology solution 
by identifying common patterns
Business concepts are described only once but drive multiple 
application layers and multiple technologies
Supports system evolution as technologies come and go
Brings the fun back to application development!

NO FLUFF
Now That’s Lean! ™
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So how does MDD work?

All application layers driven from a single business model
Business model automatically translated to technology model(s) and code

This is done by recognising common business patterns
Example – a business entity can generate

A Plain Old Java (POJO)/C# Object
A Data Access Object (DAO)
SQL for generating database tables, constraints and indexes

<<Enumeration>>
Role

+counterPartyTrader : String = COUNTERPARTY TRADER
+trader : String = TRADER

<<Entity>>
Company

+quotesRequireApproval : Boolean
+name : String

<<Entity>>
CompanyContact

+role : Role

<<Entity>>
Address

+country : String

+street : String

+state : String
+city : String

+zip : String

<<Entity>>
Contact

+username : String
+firstName : String
+lastName : String

<<Entity>>
Meter

+meterId : String
+name : String

<<Entity>>
Contract

+begDate : Date
+endDate : Date

+contracts*

+meters
*

+parties*

+contracts

*

+contract

1

+bil lingAddress

1

+company
*

+contacts
*

<<Service>>
TradingService

+getTradeSummaries( criteria : TradeSearchCriteriaVO ) : TradeSummaryVO[]

+approveQuote( trade : TradeVO, comments : CommentsVO ) : void

+getTradeSummaryForUser( userId : String ) : TradeSummaryVO[]

+saveTrade( trade : TradeVO, comments : CommentsVO ) : Long

+cancelQuote( tradeId : Long, comments : CommentsVO ) : void
+getTradeDetails( tradeId : Long ) : TradeDetailsVO

+getAllCommodities() : CommodityVO[]
+getAllPriceIndexes() : PriceIndexVO[]

TradeStatusRecord

CommodityPosition

CompanyContact

TradeContact

Commodity

Comments

PriceIndex Contract

Position Contact

Trade

Point
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But we already do that with CASE tools – what’s different?
Traditionally CASE tools have been used for

Business modelling and/or technology modelling
No connection between the two

Code generation is usually done from technical models
One-to-one mapping between classes in the model and classes in code

Model Driven Development changes all that!
Business model generates entire layers of your application
One model element can generate several implementation artefacts

What are the enablers that make this possible now?
Standardisation of service models and technologies such as

Web Services
J2EE and .NET platforms

Availability of innovative application frameworks such as
Hibernate / NHibernate
Spring / Spring.NET
Struts / ASP.NET
Swing / Windows Forms

Advent of business-process centric platforms such as
jBPM / WebLogic Integration / WebSphere BI / Windows Workflow / BizTalk
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Sapient|Approach Technology Stack
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S|A Technology Stack for Java

JSP/Struts/Tiles | Swing

Session Beans and POJOs

Hibernate

Workflow Engine

ACEGI

App Server

Spring

EAI / ESB Product

RDBMS
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S|A Technology Stack for .NET

ASP.NET 2.0 | WinForms

Web Services

NHibernate

BizTalk Orchestrations / WF

BizTalk Messaging

SQL Server
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Order Execution Scenario
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Logical Architecture
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Key Elements of the Business Model

<<Enumeration>>
Role

+counterPartyTrader : String = COUNTERPARTY TRADER
+trader : String = TRADER

<<Entity>>
Company

+quotesRequireApproval : Boolean
+name : String

<<Entity>>
CompanyContact

+role : Role

<<Entity>>
Address

+country : String

+street : String

+state : String
+city : String

+zip : String

<<Entity>>
Contact

+username : String
+firstName : String
+lastName : String

<<Entity>>
Meter

+meterId : String
+name : String

<<Entity>>
Contract

+begDate : Date
+endDate : Date

+contracts*

+meters
*

+parties*

+contracts

*

+contract

1

+billingAddress

1

+company
*

+contacts
*

<<Service>>
TradingService

+getTradeSummaries( criteria : TradeSearchCriteriaVO ) : TradeSummaryVO[]

+approveQuote( trade : TradeVO, comments : CommentsVO ) : void

+getTradeSummaryForUser( userId : String ) : TradeSummaryVO[]

+saveTrade( trade : TradeVO, comments : CommentsVO ) : Long

+cancelQuote( tradeId : Long, comments : CommentsVO ) : void
+getTradeDetails( tradeId : Long ) : TradeDetailsVO

+getAllCommodities() : CommodityVO[]
+getAllPriceIndexes() : PriceIndexVO[]

TradeStatusRecord

CommodityPosition

CompanyContact

TradeContact

Commodity

Comments

PriceIndex Contract

Position Contact

Trade

Point

Business entities
and their
relationships

Use cases and
business 
processes

Application 
behaviour
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Object Model

+orderStatus : OrderStatus

+execRefId : String [0..1]

+execType : ExecType

+transactTime : Date

+lastPrice : Money

+avgPrice : Money

+execId : String

+leavesQty : int
+cumQty : int

+lastQty : int

<<Entity>>
Execution

<<Entity>>
Order

+orderDuration : OrderDuration

+errorMessage : String [0..1]

+orderStatus : OrderStatus

+transactTime : Date [0..1]

+clOrdId : String

+orderQty : int
+side : Side

<<Entity>>
Instrument

+securityType : SecurityType
+closingPrice : Money

+symbol : String
+name : String

<<EmbeddedValue>>
Money

+currency : String
+value : double

<<Entity>>
MarketOrder

<<Entity>>
Party

+name : String

<<Entity>>
LimitOrder

+price : Money

<<Entity>>
OrderList

+orders

*

+counterparty

1

+order

1
{@andromda.hibernate.cascade=all-delete-orphan}

+executions
*

*

+instrument

1

0..1 {@andromda.hibernate.cascade=all-delete-orphan}

+orders*

+aggregateOrder

0..1

+partOrders

*
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Code Generated for Order Entity

Order schema-create.sqlOrder.hbm.xml

OrderImpl

OrderDao
interface

OrderDaoBase

OrderDaoImpl

<<Entity>>
Order

+orderDuration : OrderDuration

+errorMessage : String [0..1]

+orderStatus : OrderStatus

+transactTime : Date [0..1]

+clOrdId : String

+orderQty : int
+side : Side



© Copyright 2006 Sapient Corporation  22

Service Model
<<Service>>

OrderService

+GetOrdersWithExecutions( criteria : OrderSearchCriteriaVO ) : OrderWithExecutionsVO[]

+CreateOrders( orderVOs : OrderVO[], counterpartyId : long ) : long
+CreateOrder( orderVO : OrderVO, counterpartyId : long ) : long

+GetOrders( criteria : OrderSearchCriteriaVO ) : OrderVO[]
+GetOrdersInList( orderListId : long ) : OrderVO[]

+ProcessPendingSendOrders() : void
+ProcessReceivedOrders() : void

+GetAllParties() : PartyVO[]

<<Entity>>
MarketOrder

<<Entity>>
Instrument

<<Entity>>
OrderList

<<Entity>>
Order

<<Entity>>
Party

<<Entity>>
LimitOrder

<<Service>>
OrderExecutionService

+CreateOrder( orderVO : OrderVO, counterpartyId : long ) : Order

+GetOrderWithExecutions( orderId : long ) : Order
+UpdateOrder( order : Order ) : void

+GetOrder( orderId : long ) : Order

<<Service>>
BrokerResponseService

+CreateExecution( executionVO : ExecutionVO, clOrdId : String ) : void

<<Entity>>
MarketOrder

<<Entity>>
Instrument

<<Entity>>
OrderList

<<Entity>>
Order

<<Entity>>
Party

<<Entity>>
Order

<<Entity>>
Execution

<<Entity>>
LimitOrder
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Code Generated for OrderService

OrderService
interface

OrderServiceBase

OrderServiceImpl

OrderVO

<<Service>>
OrderService

+ProcessPendingSendOrders() : void
+ProcessReceivedOrders() : void

+GetAllParties() : PartyVO[]
...
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Process Model
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Demonstration
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Pilot Projects, Results and Benefits
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Pilot Projects
High Energy

Reference application for the S|A Technology Stack
Increases operational efficiency in natural gas trading
Achieved 25% LOE reduction over traditional approach

German Telecom client
Value-added services based on directory data
Delivered in 6 weeks, although estimates using traditional techniques predicted 
this was not possible

North American Energy Services client
Project 1: Lower natural gas costs by aggregating customer needs
Project 2: Collection of gas usage information from disparate sources
Reduced overall development time and effort, higher quality results

North American Financial Services client
Replaced EJB2 style entity beans with Hibernate 3.1
The targeted use case of processing 250 items dropped from 31 sec. to around 
15 sec. With L2 cache, it dropped to under 10 sec. The desired SLA is 8 sec. 
Approximately 50% of the code remains unchanged, which accounts for 7 sec. of 
the total time. 
The amount of code, and code complexity was also significantly reduced
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Results from High Energy

Statistics: Middle-Tier
85% of code generated automatically

Statistics: Front-End
68% of code generated automatically

We believe that MDD provides at least 30% gain in productivity
Higher if team is highly experienced with MDD and the technology stack

Similar results obtained by an independent study conducted by The 
Middleware Company

“The result of this study is the MDA team developed their application 
35% faster than the traditional team.”
http://www.omg.org/mda/mda_files/MDA_Comparison-TMC_final.pdf
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Benefits Achieved through Agile MDD

Better
Customer
Interaction

Improved
Knowledge
Sharing
and Reuse

Increased
Solution

Quality

Accelerated
Time-to-Value

Agile
MDD
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Benefits Achieved through Agile MDD

Common language for business 
users and developers

Models describe business 
requirements precisely and 
succinctly

Greater focus on getting the 
business model right

Code is just a by-product of well-
understood customer requirements

Models always represent the 
current state of the system

Not just a piece of outdated 
documentation
Models are first-class artefacts, as 
is source code
Solution’s expected behaviour is 
unambiguous to all stakeholders

Better
Customer
Interaction
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Benefits Achieved through Agile MDD

Preserves investment in 
business models

Supports system evolution as 
technologies come and go
Enables expression of 
accumulated industry 
knowledge in the form of 
reusable domain-specific 
business models

Improved
Knowledge
Sharing
and Reuse
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Benefits Achieved through Agile MDD

More thought put into design 
patterns instead of hacking 
code

Relentless commitment to 
simple design and YAGNI

Reduces possibility of human 
error

Increased
Solution

Quality
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Benefits Achieved through Agile MDD

Lower level of effort
Finally, there is a way to 
automatically crank out 
mundane code

Faster response to changing 
business needs

Developers are less likely to 
resist requirement changes
Code generation takes care of 
low-level implementation 
details

Accelerated
Time-to-Value
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