
Model Driven Development
Through the Agile Looking Glass

Agile India, 5-6 May, 2006, Bangalore, India
egottesman@sapient.com

© Copyright 2006 Sapient Corporation 2

Objectives
Present Sapient’s point-of-view on emerging software development trends
Discuss how Agile and MDD are together changing the way we develop

© Copyright 2006 Sapient Corporation 3

Agenda
A look at the current state of the industry
What is the problem we are trying to solve?
Our solution
Pilot projects, results and benefits
Questions and feedback

© Copyright 2006 Sapient Corporation 4

How is our industry performing?

The vast majority of projects still
do not complete on time or on
budget
For solutions that are actually
delivered, nearly two-thirds of
the features built are rarely or
never used – in other words,
waste!
The root cause of this waste is
fundamentally driven by the
ways that partners engage with
their clients
Customers have been burned
and aren’t willing to wait before
seeing ROI – they want to know
the solution will meet their
needs

Source: The Chaos Chronicles, The Standish Group, 2004.

Always or often

Sometimes

Rarely

20%

16%

19%

Never 45%

Valuable features

Waste

On time,
on budget

Challenged

Cancelled

29%

53%

18%

Success

Failure

© Copyright 2006 Sapient Corporation 5

Object Role Models

Agile Methods

Spiral

Javadoc

DocBook

Turbo Pascal

A Brief (Abridged) History of Software Development…

1970 1980 1990 2000

Data Flow Diagrams

Data Dictionaries

M
od

el
in

g
DTSS

RAD

Waterfall

Visual Studio

VisualAge

UML

Eclipse

NetBeans

IBM Rational Tools

BPMN

Entity Relationship Models

In
te

gr
at

ed

D
ev

el
op

m
en

t
En

vi
ro

nm
en

ts
D

oc
um

en
ta

tio
n

D
ev

el
op

m
en

t
Pr

oc
es

se
s

MDA

TeX/LaTeX

Automation and Convergence

Decreasing Cycle Times, Embracing Change,
Engaging Business/End Users, Eliminating Waste

© Copyright 2006 Sapient Corporation 6

A common way to develop custom applications today…

Gather requirements

Create models – business process models,
object models, data models, …

Translate these models to code.
Code a lot!

Test, fix and tune the “crude” application until it is refined.
Iterate, iterate, iterate…

© Copyright 2006 Sapient Corporation 7

What’s wrong with this approach?

Laborious and inefficient
Several tasks are repetitive, mundane and boring
Technology cannot keep up with business
Implementation does not match the requirements
Difficult to remain competitive

Business User

Send / Receive Group

System Sales Person

Customer Natural Gas Retailer

Comm.
Order

Received

Start
Comm.
Order

Send
Commodity

Order

New
Order Get Commodity

Price From
Suppliers

Compose
Priced Order

Review /
Adjust /
Approve

Priced Order

Sales approval required

Send Priced
Order to

Customer

Receive
Priced Order

Priced
OrderReview /

Approve
Priced Order

Send
Approved

Order

Receive
Approved

Order

Deactivate
Order

Approv
ed

Order

Compute
Basis

Fixed price required Developer

DBA

Company ContactCompany Contact

Contract Address

Meter

<<Enumeration>>
Role

+counterPartyTrader : String = COUNTERPARTY TRADER
+trader : String = TRADER

<<Entity>>
Company

+quotesRequireApproval : Boolean
+name : String

<<Entity>>
CompanyContact

+role : Role

<<Entity>>
Address

+country : String

+street : String

+state : String
+city : String

+zip : String

<<Entity>>
Contact

+username : String
+firstName : String
+lastName : String

<<Entity>>
Meter

+meterId : String
+name : String

<<Entity>>
Contract

+begDate : Date
+endDate : Date

+contracts*

+meters
*

+parties*

+contracts

*

+contract

1

+billingAddress

1

+company
*

+contacts
*

© Copyright 2006 Sapient Corporation 8

What can we do to change this?

Create a process that adapts to changing business needs
Provide frequent opportunities to business/end users to offer feedback

Raise the level of abstraction
Let developers focus on the business problem – not on technology trivia

Eliminate manual translations to get from requirements to code
Recognise repetitive tasks and patterns
Automate, automate, automate!

So how do we do that?

© Copyright 2006 Sapient Corporation 9

Release 2Fusion Executable Architecture Release

High Priority

Low Priority

X

Regular iterations of 2-4 weeks

Story
Backlog

Ability to add/remove
and reprioritize stories
each iteration

Introducing Sapient|Approach

© Copyright 2006 Sapient Corporation 10

Supplemental Artifacts/Models

Interaction Patterns
Personas
Task Clusters
Wireframes
User Scenarios
Site Maps
Style Guides
UI Prototypes

Supplemental Artifacts/Models

Interaction Patterns
Personas
Task Clusters
Wireframes
User Scenarios
Site Maps
Style Guides
UI Prototypes

Send / Receive Group

System Sales Person

Customer Natural Gas Retailer

Comm .

Order

Received

Start

Comm .

Order

Send

Commodity

Order

New

Order

Get Commodity

Price From

Suppliers

Compose

Priced Order

Review /

Adjust /

Approve

Priced Order

Sales approval required

Send Priced

Order to

Customer

Receive

Priced Order

Priced

Order

Review /

Approve

Priced Order

Send

Approved

Order

Receive

Approved

Order

Deactivate

Order

Approv

ed

Order

Compute

Basis

Fixed price required

<<Enumeration>>Role
+counterPartyTrader : String = COUNTERPARTY TRADER+trader : String = TRADER

<<Entity>>Company
+quotesRequireApproval : Boolean+name : String

<<Entity>>CompanyContact
+role : Role

<<Entity>>Address

+country : String

+street : String
+state : String+city : String
+zip : String

<<Entity>>Contact
+username : String+firstName : String+lastName : String

<<Entity>>Meter
+meterId : String+name : String

<<Entity>>Contract
+begDate : Date+endDate : Date

+contracts*

+meters*

+parties*

+contracts
*

+contract
1

+billingAddress
1

+company* +contacts*

<<Service>>
TradingService

+getTradeSummaries(criteria : TradeSearchCriteriaVO) : TradeSummaryVO[]
+approveQuote(trade : TradeVO, comments : CommentsVO) : void

+getTradeSummaryForUser(userId : String) : TradeSummaryVO[]
+saveTrade(trade : TradeVO, comments : CommentsVO) : Long
+cancelQuote(tradeId : Long, comments : CommentsVO) : void+getTradeDetails(tradeId : Long) : TradeDetailsVO
+getAllCommodities() : CommodityVO[]+getAllPriceIndexes() : PriceIndexVO[]

TradeStatusRecord

CommodityPosition

CompanyContact

TradeContact

Commodity

Comments

PriceIndexContract

Position Contact

Trade

Point

Just-In-Time
Use Case
Modeling

Continuous
Integration

Automated
Functional

Acceptance
Testing

Model-Driven
Development

Sapient|Approach – A typical iteration

© Copyright 2006 Sapient Corporation 11

Model Driven Development

A software development approach where system implementation is
truly driven by the business model
The business model is independent of technology
Business model is automatically translated into a technology solution
by identifying common patterns
Business concepts are described only once but drive multiple
application layers and multiple technologies
Supports system evolution as technologies come and go
Brings the fun back to application development!

NO FLUFF
Now That’s Lean! ™

© Copyright 2006 Sapient Corporation 12

So how does MDD work?

All application layers driven from a single business model
Business model automatically translated to technology model(s) and code

This is done by recognising common business patterns
Example – a business entity can generate

A Plain Old Java (POJO)/C# Object
A Data Access Object (DAO)
SQL for generating database tables, constraints and indexes

<<Enumeration>>
Role

+counterPartyTrader : String = COUNTERPARTY TRADER
+trader : String = TRADER

<<Entity>>
Company

+quotesRequireApproval : Boolean
+name : String

<<Entity>>
CompanyContact

+role : Role

<<Entity>>
Address

+country : String

+street : String

+state : String
+city : String

+zip : String

<<Entity>>
Contact

+username : String
+firstName : String
+lastName : String

<<Entity>>
Meter

+meterId : String
+name : String

<<Entity>>
Contract

+begDate : Date
+endDate : Date

+contracts*

+meters
*

+parties*

+contracts

*

+contract

1

+bil lingAddress

1

+company
*

+contacts
*

<<Service>>
TradingService

+getTradeSummaries(criteria : TradeSearchCriteriaVO) : TradeSummaryVO[]

+approveQuote(trade : TradeVO, comments : CommentsVO) : void

+getTradeSummaryForUser(userId : String) : TradeSummaryVO[]

+saveTrade(trade : TradeVO, comments : CommentsVO) : Long

+cancelQuote(tradeId : Long, comments : CommentsVO) : void
+getTradeDetails(tradeId : Long) : TradeDetailsVO

+getAllCommodities() : CommodityVO[]
+getAllPriceIndexes() : PriceIndexVO[]

TradeStatusRecord

CommodityPosition

CompanyContact

TradeContact

Commodity

Comments

PriceIndex Contract

Position Contact

Trade

Point

© Copyright 2006 Sapient Corporation 13

But we already do that with CASE tools – what’s different?
Traditionally CASE tools have been used for

Business modelling and/or technology modelling
No connection between the two

Code generation is usually done from technical models
One-to-one mapping between classes in the model and classes in code

Model Driven Development changes all that!
Business model generates entire layers of your application
One model element can generate several implementation artefacts

What are the enablers that make this possible now?
Standardisation of service models and technologies such as

Web Services
J2EE and .NET platforms

Availability of innovative application frameworks such as
Hibernate / NHibernate
Spring / Spring.NET
Struts / ASP.NET
Swing / Windows Forms

Advent of business-process centric platforms such as
jBPM / WebLogic Integration / WebSphere BI / Windows Workflow / BizTalk

© Copyright 2006 Sapient Corporation 14

Sapient|Approach Technology Stack

© Copyright 2006 Sapient Corporation 15

S|A Technology Stack for Java

JSP/Struts/Tiles | Swing

Session Beans and POJOs

Hibernate

Workflow Engine

ACEGI

App Server

Spring

EAI / ESB Product

RDBMS

© Copyright 2006 Sapient Corporation 16

S|A Technology Stack for .NET

ASP.NET 2.0 | WinForms

Web Services

NHibernate

BizTalk Orchestrations / WF

BizTalk Messaging

SQL Server

© Copyright 2006 Sapient Corporation 17

Order Execution Scenario

© Copyright 2006 Sapient Corporation 18

Logical Architecture

© Copyright 2006 Sapient Corporation 19

Key Elements of the Business Model

<<Enumeration>>
Role

+counterPartyTrader : String = COUNTERPARTY TRADER
+trader : String = TRADER

<<Entity>>
Company

+quotesRequireApproval : Boolean
+name : String

<<Entity>>
CompanyContact

+role : Role

<<Entity>>
Address

+country : String

+street : String

+state : String
+city : String

+zip : String

<<Entity>>
Contact

+username : String
+firstName : String
+lastName : String

<<Entity>>
Meter

+meterId : String
+name : String

<<Entity>>
Contract

+begDate : Date
+endDate : Date

+contracts*

+meters
*

+parties*

+contracts

*

+contract

1

+billingAddress

1

+company
*

+contacts
*

<<Service>>
TradingService

+getTradeSummaries(criteria : TradeSearchCriteriaVO) : TradeSummaryVO[]

+approveQuote(trade : TradeVO, comments : CommentsVO) : void

+getTradeSummaryForUser(userId : String) : TradeSummaryVO[]

+saveTrade(trade : TradeVO, comments : CommentsVO) : Long

+cancelQuote(tradeId : Long, comments : CommentsVO) : void
+getTradeDetails(tradeId : Long) : TradeDetailsVO

+getAllCommodities() : CommodityVO[]
+getAllPriceIndexes() : PriceIndexVO[]

TradeStatusRecord

CommodityPosition

CompanyContact

TradeContact

Commodity

Comments

PriceIndex Contract

Position Contact

Trade

Point

Business entities
and their
relationships

Use cases and
business
processes

Application
behaviour

© Copyright 2006 Sapient Corporation 20

Object Model

+orderStatus : OrderStatus

+execRefId : String [0..1]

+execType : ExecType

+transactTime : Date

+lastPrice : Money

+avgPrice : Money

+execId : String

+leavesQty : int
+cumQty : int

+lastQty : int

<<Entity>>
Execution

<<Entity>>
Order

+orderDuration : OrderDuration

+errorMessage : String [0..1]

+orderStatus : OrderStatus

+transactTime : Date [0..1]

+clOrdId : String

+orderQty : int
+side : Side

<<Entity>>
Instrument

+securityType : SecurityType
+closingPrice : Money

+symbol : String
+name : String

<<EmbeddedValue>>
Money

+currency : String
+value : double

<<Entity>>
MarketOrder

<<Entity>>
Party

+name : String

<<Entity>>
LimitOrder

+price : Money

<<Entity>>
OrderList

+orders

*

+counterparty

1

+order

1
{@andromda.hibernate.cascade=all-delete-orphan}

+executions
*

*

+instrument

1

0..1 {@andromda.hibernate.cascade=all-delete-orphan}

+orders*

+aggregateOrder

0..1

+partOrders

*

© Copyright 2006 Sapient Corporation 21

Code Generated for Order Entity

Order schema-create.sqlOrder.hbm.xml

OrderImpl

OrderDao
interface

OrderDaoBase

OrderDaoImpl

<<Entity>>
Order

+orderDuration : OrderDuration

+errorMessage : String [0..1]

+orderStatus : OrderStatus

+transactTime : Date [0..1]

+clOrdId : String

+orderQty : int
+side : Side

© Copyright 2006 Sapient Corporation 22

Service Model
<<Service>>

OrderService

+GetOrdersWithExecutions(criteria : OrderSearchCriteriaVO) : OrderWithExecutionsVO[]

+CreateOrders(orderVOs : OrderVO[], counterpartyId : long) : long
+CreateOrder(orderVO : OrderVO, counterpartyId : long) : long

+GetOrders(criteria : OrderSearchCriteriaVO) : OrderVO[]
+GetOrdersInList(orderListId : long) : OrderVO[]

+ProcessPendingSendOrders() : void
+ProcessReceivedOrders() : void

+GetAllParties() : PartyVO[]

<<Entity>>
MarketOrder

<<Entity>>
Instrument

<<Entity>>
OrderList

<<Entity>>
Order

<<Entity>>
Party

<<Entity>>
LimitOrder

<<Service>>
OrderExecutionService

+CreateOrder(orderVO : OrderVO, counterpartyId : long) : Order

+GetOrderWithExecutions(orderId : long) : Order
+UpdateOrder(order : Order) : void

+GetOrder(orderId : long) : Order

<<Service>>
BrokerResponseService

+CreateExecution(executionVO : ExecutionVO, clOrdId : String) : void

<<Entity>>
MarketOrder

<<Entity>>
Instrument

<<Entity>>
OrderList

<<Entity>>
Order

<<Entity>>
Party

<<Entity>>
Order

<<Entity>>
Execution

<<Entity>>
LimitOrder

© Copyright 2006 Sapient Corporation 23

Code Generated for OrderService

OrderService
interface

OrderServiceBase

OrderServiceImpl

OrderVO

<<Service>>
OrderService

+ProcessPendingSendOrders() : void
+ProcessReceivedOrders() : void

+GetAllParties() : PartyVO[]
...

© Copyright 2006 Sapient Corporation 24

Process Model

© Copyright 2006 Sapient Corporation 25

Demonstration

© Copyright 2006 Sapient Corporation 26

Pilot Projects, Results and Benefits

© Copyright 2006 Sapient Corporation 27

Pilot Projects
High Energy

Reference application for the S|A Technology Stack
Increases operational efficiency in natural gas trading
Achieved 25% LOE reduction over traditional approach

German Telecom client
Value-added services based on directory data
Delivered in 6 weeks, although estimates using traditional techniques predicted
this was not possible

North American Energy Services client
Project 1: Lower natural gas costs by aggregating customer needs
Project 2: Collection of gas usage information from disparate sources
Reduced overall development time and effort, higher quality results

North American Financial Services client
Replaced EJB2 style entity beans with Hibernate 3.1
The targeted use case of processing 250 items dropped from 31 sec. to around
15 sec. With L2 cache, it dropped to under 10 sec. The desired SLA is 8 sec.
Approximately 50% of the code remains unchanged, which accounts for 7 sec. of
the total time.
The amount of code, and code complexity was also significantly reduced

© Copyright 2006 Sapient Corporation 28

Results from High Energy

Statistics: Middle-Tier
85% of code generated automatically

Statistics: Front-End
68% of code generated automatically

We believe that MDD provides at least 30% gain in productivity
Higher if team is highly experienced with MDD and the technology stack

Similar results obtained by an independent study conducted by The
Middleware Company

“The result of this study is the MDA team developed their application
35% faster than the traditional team.”
http://www.omg.org/mda/mda_files/MDA_Comparison-TMC_final.pdf

© Copyright 2006 Sapient Corporation 29

Benefits Achieved through Agile MDD

Better
Customer
Interaction

Improved
Knowledge
Sharing
and Reuse

Increased
Solution

Quality

Accelerated
Time-to-Value

Agile
MDD

© Copyright 2006 Sapient Corporation 30

Benefits Achieved through Agile MDD

Common language for business
users and developers

Models describe business
requirements precisely and
succinctly

Greater focus on getting the
business model right

Code is just a by-product of well-
understood customer requirements

Models always represent the
current state of the system

Not just a piece of outdated
documentation
Models are first-class artefacts, as
is source code
Solution’s expected behaviour is
unambiguous to all stakeholders

Better
Customer
Interaction

© Copyright 2006 Sapient Corporation 31

Benefits Achieved through Agile MDD

Preserves investment in
business models

Supports system evolution as
technologies come and go
Enables expression of
accumulated industry
knowledge in the form of
reusable domain-specific
business models

Improved
Knowledge
Sharing
and Reuse

© Copyright 2006 Sapient Corporation 32

Benefits Achieved through Agile MDD

More thought put into design
patterns instead of hacking
code

Relentless commitment to
simple design and YAGNI

Reduces possibility of human
error

Increased
Solution

Quality

© Copyright 2006 Sapient Corporation 33

Benefits Achieved through Agile MDD

Lower level of effort
Finally, there is a way to
automatically crank out
mundane code

Faster response to changing
business needs

Developers are less likely to
resist requirement changes
Code generation takes care of
low-level implementation
details

Accelerated
Time-to-Value

Questions and Feedback

Agile India, 5-6 May, 2006, Bangalore, India
egottesman@sapient.com

