
Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Test Driven Development
TDD

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Outline

• Good Unit Tests

• Discover TDD

• The TDD Rhythm

• Goals of TDD

• When to use TDD

• Pair programming

• Refactoring

• Q & A

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

• Run fast (they have short setups, run times,

and break downs)

• Run in isolation (reordering possible)

• Use data that makes them easy to read and to

understand

• Use real data (copies of production data) when

they need to

Good Unit Tests…Kent Beck

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

What is TDD?

• An iterative technique to develop software

• One must first write a test that fails before he writes a
new functional code.

• The goals of TDD is specification and not validation

• A practice for efficiently evolving useful code

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Overview

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

The TDD Rhythm is “Test, Implement,
Refactor”

• Think about what a class should do

• Write a test for a method that will fail, but later
will prove that the class fulfils its requirements

• Compile and run your test, getting the red bar

• Make the test pass, “faking” it where
appropriate

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

The TDD Rhythm is “Test, Implement,
Refactor”

• If possible write another failing test or
assertion for the same method

• Make that test pass

• Repeat for all requirements of the method

• When all tests are green, refactor to remove
duplication and simplify the design of the code

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

TDD is about Design, not Testing!

• Use TDD to produce the simplest thing that works

(but not the dumbest!)

• Drive the design of the software through unit tests

• Focus on writing simple solutions for today’s

requirements

• Write just enough code to make the tests pass, and no

more

• Executable code becomes your requirement

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Clean code that works

How does TDD achieve this?

• Predictable – Tells you when you are done

• Learn – Teaches you all lessons that the code has to

teach

• Confidence – Green bar gives you more confidence

• Documentation – Good starting point to understand

code

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Clean code that works…

• Protection – Puts a test-harness around your code

• Avoids integration night-mares

• Automated test suit for you application

"Perfection (in design) is achieved not when there is
nothing more to add, but rather when there is nothing
more to take away."– [C&B – Eric]

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

When should I use TDD?

• Always!

• Write tests for anything you feel that might break

• Design of production code should always be test-
driven

• No need to write tests for APIs you don’t own

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Two fundamental TDD rules (Kent Beck)

• Never write a single line of code unless you
have a failing automated test.

• Eliminate duplication

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Legacy Code

What do you do if you have a body of existing
code without tests?
– Run away

– Write tests in the areas where you are changing
the system

– If you are working on a defect, write a test to
show the defect, then fix it.

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

When do I stop?

• The system works – All the tests pass

• Code communicates what it’s doing

• There is no duplicate code

• The system should have the fewest possible

classes and methods

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Smells that indicate TDD has gone wrong

• Testing private/protected methods

• Responsibility-laden objects

• Extensive setup/teardown

• Brittle tests

• Slow tests

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Pair Programming

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Advantages of Pair Programming

• Promotes better communicationamong the team members
• Brings out better quality of code

– code-review
– early defect detection and defect prevention
– Mentorship and “Pair-Learning”

• Facilitates a smooth and gradual induction of new members to
a team

• Improves retention and confidence
• Helps in spreading the knowledgeabout every part of a

system to more than one person
• People enjoy themselves more

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Refactoring improves design

“Refactoring is the process of changing a
software system in such a way that it does not
alter the external behavior of the code yet
improves its internal structure” - MartinFowler

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Refactoring examples

Extract Class
Occurs when one class is commonly changed in

different ways for different reasons. Any change to
handle a variation should change a single class

Divergent
Change

Replace Parameter with Method
Preserve Whole Object
Introduce Parameter Object

Don't pass in everything the method needs; pass in
enough so that the method can get to everything it
needs.

Long Parameter
List

Extract Method
Replace Temp with Query
Introduce Parameter Object
Preserve Whole Object
Replace Method with Method Object

The longer the method the harder it is to see what it’s
doing.

Long Method

Extract Method
Rename Method
Introduce Assertion

Should only be used to clarify "why" not "what". Can
quickly become verbose and reduce code clarity.

Comments

RefactoringsDescriptionSmell

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Retrospective

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Pointers

• Kent Beck, Test Driven Development By Example.

• Test Infected -
http://junit.sourceforge.net/doc/testinfected/testing.htm

• http://www.artima.com/intv/testdriven.html

• http://www.opensourcetesting.org/

• http://c2.com/cgi/wiki?WhatIsRefactoring

• http://www.refactoring.com/

• http://pairprogramming.com/

Confidential. Copyright 2005 ThoughtWorks, Inc. All rights reserved. Do not copy or distribute without permission..

Questions

Thank You!

Naresh Jain Anand Joglekar
nashjain@gmail.com ajoglekar@thoughtworks.com
http://jroller.com/page/njain

