
Agile Methods, Testing 
and Quality Assurance

bret@pettichord.com
www.pettichord.com

www.thoughtworks.com

March 2005, Agile India, Bangalore
Copyright © 2005 Bret Pettichord. Copying permitted with attribution.



2

How to Invent an Airplane



3

How to Invent an Airplane

• Wright brothers had to learn 
how to test their design 
elements first
• Propeller shape
• Wing design
• Control surfaces

• Invented the wind tunnel 
and used it to test propeller 
and wing designs

• Created and tested kites 
and gliders to test wing 
designs and control surfaces

• Had to invent the science of 
aeronautics

• Had to build testing into 
their design process



4

But Software isn’t as Hard as Aeronautics

• Working software can actually be built using 
code and fix

• But like the Wright brothers, 
agile developers…
• Test their components as part of the design process
• Have had to create test harnesses and testing 

techniques
• Make frequent reality checks instead of depending 

on the wisdom of the plan



5

What is Agile Development?

• Work is divided into chunks of 
business value
• These ‘stories’ seem valuable to 

a business user
• Customer can measure 

progress in their own terms 
• Requires delivery of vertical 

rather than horizontal 
collections of code 

• Customer-perspective 
acceptance tests determine 
completeness

• Work is scheduled in time-
boxed iterations
• Overhang is rescheduled for a 

future iteration
• Ensures regular deliveries of 

working code
• Allows team velocity to be 

measured
• Contrast with RUP and other 

spiral methods that use scope-
boxed iterations

• Team approach
• The team contains all the 

necessary skills
• The team as a whole is 

responsible for the success and 
quality of the software

• Frequent collaboration, pairing, 
changing pairs and dispersed 
knowledge

• Collective code ownership 
(optimistic locking)

• Developers write automated 
unit tests
• Writing tests is seen as part of 

the coding job
• Expected to run tests often
• Breaking unit tests is always a 

showstopper



6

Responding to Change vs. Following a Plan

• Change includes learning
• We don’t know everything at the start

• Two Approaches to Planning
• Planning is hard, therefore we must get better at it
• Planning is hard, therefore we must reduce the need for it

• Agile development is an empirical practice focused on 
working code (working code over detailed 
documentation)

• The uncertainties of planning are mitigated with 
frequent reality checks

• The biggest innovations in testing today are coming 
from the agile community



7

Reality Check: Unit Testing

• Units are functions, methods or classes.
• Unit tests are in the same language as the code being 

tested.
• Unit tests are written by the programmers who wrote 

the the code being tested.
• A test harness or framework collects tests into suites 

and allows them to be run as a batch.
• The X-Unit frameworks are popular harnesses.

• JUnit for Java, NUnit for Dot-Net…

• Most agile developers are ‘test-infected’



8

Types of Unit Testing

Unit isolation testing
Test each unit in 
isolation

Create stubs for 
external units

•Use Mock Object 
classes

Unit integration 
testing
Test units in context

Call external 
units

•Introduces 
dependencies. 
•Test suites take longer 
to run

• Many agile developers strongly prefer unit isolation 
tests: “true unit tests”
• Run faster, therefore run more often
• Less likely to break when refactoring other code 



9

Refactoring
Improving the Design of Existing Code

• Refactoring restructures code (hopefully for the better) 
without changing its behavior.

• Unit tests define behavior and therefore determine 
whether behavior was inadvertently changed.

• Traditionally, lack of unit tests have discouraged 
developers from refactoring, resulting in brittle code.

• Refactoring, by Martin Fowler
• Testing is an integral component to refactoring.
• 9 of the 17 “sound bites” mention testing.



10

Test-Driven Development

• Developers write unit tests 
before coding.
• Motivates coding
• Improves design 

• reducing coupling 
• improving cohesion

• Provides regression tests

• An approach to design 
• More than just as test 

strategy
• Specification by Example
• Focuses programmer on 

how callers will use the 
code

• Spawning new lightweight 
frameworks using 
dependency injection.

public void testMultiplication() {
Dollar five = Money.dollar(5);
assertEqual(new Dollar(10), five.times(2));
assertEqual(new Dollar(15), five.times(3));

}



11

Test-Driven Development: Red-Green-Refactor

1. Write a test, then run it. Make sure it 
fails. RED

2. Make the test pass. GREEN
• Use the simplest design that will work.
• Bad design (duplication, etc) is OK! (for 

now)
• Add code only when tests demand it.

3. REFACTOR to improve the design. 
• Now, remove duplication
• Unit tests are the reality check to let you 

know you didn’t break anything



12

Reality Check: Continuous Integration

• Rebuild the code whenever a new commit is made
• Then run the unit tests
• Post results to the web
• Send email with any errors

• Tools:
• Cruise Control
• Damage Control



13

Reality Check: Spikes

• The agile approach to architecture
• A spike is throwaway code that explores a particular 

approach to assembling code
• Will it work?
• How will it perform?
• Is it ugly?



14

Reality Check: Frequent Delivery of Business Value

• Not just a hunk of code
• Actual functionality that is valuable to end users
• A vertical rather than a horizontal slice
• Delivered to the customer
• Allows customer satisfaction to be measured
• Regular ‘Beta’ testing throughout development
• Usability testing, exploratory testing
• System must remain stable to make this happen (hence 

the need for automated regression tests)
• Focus on true customer satisfaction rather than just 

meeting the letter of the requirements



15

Reality Check: Immediate Acceptance Testing

• A story isn’t done until it has been tested
• Usually tested in the iteration
• “Sometimes you just have to throw a turkey in the 

engine.”



16

Automating Acceptance Testing

• Characteristics of Successful Test Automation Projects…
• Collaboration between testers and developers
• Automate early
• Team commitment (vs “it would be good if”)

• Agile teams have all three

• Agile Testing Rules
• Programmers write automated unit tests.
• Acceptance tests must also be automated.
• Programmers and testers work together 

on acceptance tests.



17

Challenge: Regression Test Tools

• Most commercial test tools work poorly in an agile 
environment. Most have these flaws:
• Vendor-specific languages (vendorscripts)
• Poor integration with source control
• Hard to use with continuous integration
• Impractical to install on every workstation

• These problems make them impractical for use by the 
team as a whole.

• Agile teams are building their own test tools and 
releasing many of them as open-source…



18

Problems with Commercial Test Tools

• Proprietary Scripting Languages
• Winrunner (TSL), SilkTest (4test), Robot (Test Basic)
• http://www.stickyminds.com/se/S2326.asp

• But newer tools are now using standard languages
• Astra QuickTest (VB Script), XDE Tester (Java), 

• Incompatibility with Source Control
• Temporary files and directories (WinRunner)

• http://paulhammant.com/blog/000245.html
• Key information stored in repositories (Rational)

• Lack of External Calling API’s
• They refuse to allow themselves to be used as a library.
• Generally, you can only launch complete scripts with limited access to 

results information.
• Therefore difficult to integrate with Continuous Integration
• Some new low-cost and shareware tools are exceptions

• E.g. TestComplete
• Restrictive and Expensive Licensing

• Developers can’t run test suites.
These “features” encourage vendor-lock and frustrate serious 

programming 
• Open-Source Tools almost always avoid these shortcomings.



19

Watir

• Watir is a Ruby-library that drives the IE browser.
• Bret Pettichord & Paul Rogers

• Website
• http://wtr.rubyforge.org

• Mailing List
• http://rubyforge.org/projects/wtr/



20

Selenium

• Selenium is server-side software that delivers a 
JavaScript browser-bot that runs inside IE, Firefox or 
Mozilla.
• Jason Huggins & ThoughtWorks 

• Website
• http://selenium.thoughtworks.com



21

QA Paradigm #1: Quality Assurance is Testing

• Most QA people are actually employed as testers
• “Did you QA this?”
• “Independent testing is better testing”
• Are used to testing untested code and struggle when 

working with agile developers
• E.g., overuse of boundary testing is common



22

QA Paradigm #2: Quality Assurance is Process

• Role defined by CMM and IEEE
• An approach that many QA groups aspire to
• The Process Police must force discipline on the 

developers
• However, test teams that also try to enforce process 

may undermine their effectiveness as testers
• discourages communication 
• reduces trust
• may cause delays

• Also, tend to enforce waterfallian practices, which is 
counterproductive for agile teams



23

QA Paradigm #3: Quality Assurance is 
Team Responsibility for Customer Satisfaction

• “Whole Team” means that QA can’t be delegated to a 
person or subgroup

• Everyone is responsible for raising quality issues
• It’s not enough to say that you did what they asked for
• Quality ultimately is defined by the customer, not by 

process standards, nor by stale documents
• This is the approach preferred by Agile teams



24

Agile Is About Reality Checks

• This conference is a chance for you to make another 
reality check.

• Agile is not about doing what the experts say.
• It is about doing what works.
• Ask the speakers how agile methods have or haven’t 

worked for them.



25

Open-Source Test Tools from ThoughtWorks

Dashboard
http://dashboard.sourceforge.net/

hloader
http://hloader.sourceforge.net/

jfcUnit
http://jfcunit.sourceforge.net/

MockMaker
http://mockmaker.sourceforge.net/

NMock
http://opensource.thoughtworks.com/projects/nmock.jsp

Marathon
http://marathonman.sourceforge.net/

Marathon.NET
http://marathonnet.sourceforge.net/

PyUnit
http://opensource.thoughtworks.com/projects/pyunit.jsp

SelfEsteem
http://selfesteem.sourceforge.net/

XMLUnit
http://xmlunit.sourceforge.net/



26

Unit Testing References

• Code First
• Pragmatic Unit Testing: In 

Java with JUnit, 
Hunt & Thomas

• “Learning to Love Unit 
Testing,” Thomas & Hunt

• http://www.pragmaticprog
rammer.com/articles/stqe-
01-2002.pdf

• “JUnit Test Infected: 
Programmers Love Writing 
Tests,” Gamma & Beck

• http://junit.sourceforge.net
/doc/testinfected/testing.ht
m

• “JUnit: A Cook’s Tour,” 
Beck & Gamma

• http://junit.sourceforge.net
/doc/cookstour/cookstour.h
tm

• “Simple Smalltalk Testing: 
With Patterns,” Kent Beck

• http://www.xprogramming
.com/testfram.htm

• Test First
• Test-Driven Development: 

A Practical Guide, David 
Astels

• JUnit Recipes, J.B. 
Rainsberger

• Unit Testing in Java: How 
Tests Drive the Code, 
Johannes Link

• Test-Driven Development: 
By Example, 
Kent Beck

http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf
http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf
http://www.pragmaticprogrammer.com/articles/stqe-01-2002.pdf
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/cookstour/cookstour.htm
http://junit.sourceforge.net/doc/cookstour/cookstour.htm
http://junit.sourceforge.net/doc/cookstour/cookstour.htm
http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm


27

Further Study

Context-Driven Testing
• Lessons Learned in Software Testing: 

A Context-Driven Approach
• Cem Kaner, James Bach & Bret Pettichord

• Mailing List
• http://groups.yahoo.com/group/software-testing/

• Wiki
• http://www.context-driven-testing.com/wiki/

Agile Testing
• Agile Testing Papers

• http://www.testing.com/agile
• “Where are the Testers in XP?”

• http://www.stickyminds.com/s.asp?F=S6217_COL_2
• Mailing List

• http://groups.yahoo.com/group/agile-testing/

Open Source Test Tools
• Home Brew Test Automation

• http://www.io.com/~wazmo/papers/homebrew_test_automation_200409.pdf


	Agile Methods, Testing and Quality Assurance
	How to Invent an Airplane
	How to Invent an Airplane
	But Software isn’t as Hard as Aeronautics
	What is Agile Development?
	Responding to Change vs. Following a Plan
	Reality Check: Unit Testing
	Types of Unit Testing
	RefactoringImproving the Design of Existing Code
	Test-Driven Development
	Test-Driven Development: Red-Green-Refactor
	Reality Check: Continuous Integration
	Reality Check: Spikes
	Reality Check: Frequent Delivery of Business Value
	Reality Check: Immediate Acceptance Testing
	Automating Acceptance Testing
	Challenge: Regression Test Tools
	Problems with Commercial Test Tools
	Watir
	Selenium
	QA Paradigm #1: Quality Assurance is Testing
	QA Paradigm #2: Quality Assurance is Process
	QA Paradigm #3: Quality Assurance is Team Responsibility for Customer Satisfaction
	Agile Is About Reality Checks
	Open-Source Test Tools from ThoughtWorks
	Unit Testing References
	Further Study

