
I hate Maintenance !

Maintenance SUCKS !



Agile Maintenance

Naresh Jain

Copyright © ThoughtWorks, 2005



3

Agenda of this discussion
� Glossary

� Why maintain software

� Types of Software Maintenance

� Traditional v/s Agile Maintenance Approach

� Agile Testing

� Agile Release Management

� Why maintenance is so expensive (and can be destructive) 

� Agile Maintenance Best Practices

� Conclusion

� Q & A



4

Glossary
Software maintenance is defined as the process of modifying 

a software system or component after delivery to correct 

faults, improve performance or other attributes, or adapt to a 

changed environment [IEEE 1990]

Iterative Agile Development

What’s the difference between Maintenance and Support?

ADD MAX VALUE TO THE CLIENT !



5

Why maintain software?
Stephen R Schach summarizes:

• Model of reality. As the reality changes, the software must adapt or die.

• Pressures from satisfied users, to extend the functionality of the 

product.

• Software is much easier to change than hardware. As a result, changes 

are made to the software whenever possible.

• Successful software survives well beyond the lifetime of the 

environment for which it was written. 



6

Types of Software Maintenance
• Corrective maintenance is maintenance performed to correct faults 

in hardware or software [IEEE 1990] 

• Adaptive maintenance is software maintenance performed to make 

a computer program usable in a changed environment [IEEE 1990].

• Perfective maintenance is software maintenance performed to 

improve the performance, maintainability, or other attributes of a 

computer program. [IEEE 1990] 

• Preventative maintenance is maintenance preformed for the 

purpose of preventing problems before they occur [IEEE 1990] 



7

The Frequency of Each Type of 

Maintenance
Types of Maintenance

61%18%

17%

4%

Corrective (fixing faults)

Perfective (new functionality)

Adaptive (environmental changes)

Other



8

Traditional v/s Agile Maintenance 

Approach
Traditional approach
1. Massive projects with waterfall model

2. CR Form

3. Change control board [CCB]

4. CCB approves and prioritizes the bugs

5. Summary of the bugs handed over to 

the developers – loss of context

6. Developers jump to the code and fix it

7. Update all the design documents

8. Regression testing

9. Patch release

Agile approach
1. Small projects with agile model

2. Bug reports / story cards

3. Developers estimate

4. Customer prioritizes the bugs

5. Common bug tracking database

6. QAs test and write functional 

acceptance tests

7. Developers write failing unit tests

8. Developers fix it and run unit & 

functional tests

9. Regression testing

10. New release



9

Quick Fix or Iterative Development
• Quick fix is often used in emergency, corrective maintenance. 

Emergency maintenance is unscheduled corrective maintenance 

performed to keep a system operational [IEEE 1998]. Also called 

Code & Fix

• Iterative development process is based on the Evolutionary 

development paradigm [Takang and Grubb 1996] or Extreme 

Programming paradigm.

• Iterative enhancement involves a five-staged cycle:

� Analysis (simulation)

� User acceptance tests and Unit tests

� Redesign and implementation

� Regression tests 

� Release



10

Agile Maintenance Testing

• Acceptance Testing – xUnit, FIT, …

• Unit Tests – Black box functional unit tests

• Regression testing is selective retesting of a system or 

component to verify that modifications have not caused 

unintended effects and that the system or component still 

complies with its specified requirements [IEEE 1990]



11

Agile Release Management
Software release management, also known as software 

configuration management, is the management of activities 

surrounding release of one or more versions of software to one 

or more customers.  Release management includes defining 

acceptable quality levels for release, authority to authorize the 

release, release procedures, and so on [IEEE 1990]. 

Best practices:

• Automated release creation and verification process 

• Automated management of application specific configuration 

• Simulation of target deployment environments and automated 

testing 

• Release creation from the QA environment 



12

Maintenance Smells
• A lot of regression bugs

• Less than 50% of the time is dedicated to refactoring

• Developers not pairing 100%

• Test coverage not improving with time

• Lack of team outings

• People getting stuck on the project for more than a year



13

Why Maintenance Is So Expensive 

(and Can Be Destructive)?
• Team stability 

• Contractual responsibility 

• Staff skills 

• Transition plan for team members 

• Program age and structure 

• Stressful nature of work

• Fluctuation in the workload and resourcing problems 

• Planning 



14

Agile Maintenance Best Practices
• Automated regression testing 

• Continuous integration 

• Coding standard 

• Developers can focus on maintainability  -

Refactoring

• Pair programming 

• Application logs 

• Bug Tracking database – Knowledge repository

• Retrospectives



15

Agile Maintenance Best 

Practices…
• QA – Developer pairing

• Debugging is parallelizable

• Involve your customer – Daily status, Project Wiki

in Customer environment, IM conversations, IPM,

• Constantly improve the test coverage

• Use some acceptance test framework

• QA smoke test on the developer machine for 

immediate feedback

• Short releases



16

My 0.02

• Source code is the king

• Untrustworthy documentation

• The bug-tracking database stores knowledge

• Reproduction is essential to obtaining a 

solution



17

Retrospective



Thank you!

email: njain@thoughtworks.com

blog: http://jroller.com/page/njain


