
Automated Codebase 
Analysis

Simon Harris
simon@redhillconsulting.com.au

James Ross
james@thoughtworks.com

Agile Programming Practices

● Deliver business value first

● YAGNI – You Ain't Gonna Need It (Yet)

– Simplest Thing That Could Possibly Work(tm)

● Pair Programming

● Automated builds

● Automated tests

● Red-Green-Refactor

● Check-in Often



Codebase Analysis in Context

● Perform code reviews

● Expose hidden design flaws

● Identify candidates for re-factoring

● Assess open source and enterprise components 
for re-usability

● Assess unfamiliar codebases

Analysis Methods

● Code Cop

– Difficult to check every check-in

● Static analysis

– Source (and executable) code

– Heuristics

– Often syntax tree only

– Cannot fix the code itself

● Dynamic analysis

– Requires a working build environment



Static Analysis Tools

● Open Source

– Checkstyle

– PMD

– CPD

– JDepend

● Commercial

– Simian (free for Open Source/Education Projects)

– PASTA (OptimalAdvisor)

Continuous Integration

● Integration with Ant

● Integration with NAnt

● Break the build

● Publishing results for management

● Incremental improvement over project lifecycle



Types of Checks

● Programming 101

– Formatting, line-Length, whitespace, etc?

– Basic metrics

– Duplicate code

● Advanced

– More metrics

– Design heuristics

– Package Dependencies

Sample Checks

● Cyclomatic complexity

● NPath complexity

● Executable statement count

● Final fields

● Duplicate code

● Missing abstraction



Demonstration

● JDK 1.4.2_05

– 3,975 files

– 1.2 million lines of raw source code

– 350,000 significant lines of code

– 108,000 duplicate lines of code in 1,789 files

– Max executable statement count: 255

– Max cyclomatic complexity: 212

– Max npath complexity: 1,077,581,313

The Future of Codebase Analysis

● Look for higher level abstractions

– Design patterns, Anti-patterns

● More expressive rule language

● Suggest improvements

● Maybe one day even make the necessary changes 
for you



Summary

● Highly customizable

● Save time and money spent on manual code 
reviews

● Codify your standards (tests!)

● Rapid evaluation of quality

● Reviews based on facts not opinions

● Raise the bar on quality as the project progresses

● Constraints promote good design

● You still need Good People(tm)

References

● Checkstyle -http://checkstyle.sf.net

● Simian -http://www.redhillconsulting.com.au/products/simian

● JDepend -http://www.clarkware.com/software/JDepend.html

● JOODI -http://sf.net/projects/joodi

● PMD and CPD -http://pmd.sf.net

● FindBugs -http://findbugs.sf.net

● PASTA -http://javacentral.compuware.com/pasta


